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1. Introduction

The mass of the b-quark, Mb, is a relevant input parameter for phenomenology analysis

based on perturbation theory. Let us just mention the extraction of Vub from inclusive

b-decays [2, 3]. Mb is a fundamental parameter of the Standard Model of particle physics.

Thus it should be determined precisely. One may of course turn the very first observation

around. For instance, applying high order perturbation theory to sufficiently well integrated

cross sections, the quark mass can be determined [4 – 15]. Still, the achievable precision is

limited by the intrinsic uncertainty of perturbation theory and maybe more by experimental

difficulties. On the other hand, the use of lattice QCD offers a strategy to compute the
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fundamental renormalization group invariant (RGI) parameters of QCD with very precisely

known experimental input, e.g. Nf (= number of quarks flavours) meson masses as well as

the nucleon mass; see [16] for a basic introduction. However, for the b-quark mass, such

a computation is more involved than for the light quarks because the achievable inverse

lattice spacings are below the mass of the quark. Effective theories have to be employed in

a numerical treatment of the bound states. The most serious problem that arises is that

a power law divergent (∼ g2
0/a) additive renormalization of the mass is present due to the

absence of a chiral symmetry in the effective theories (even in the continuum). Although

at the lowest order in Heavy Quark Effective Theory (HQET) the subtraction is known to

order g6
0/a [17 – 19], an (in the continuum limit) divergent remainder is unavoidable and

the total uncertainty is difficult to estimate as long as the renormalization is carried out

perturbatively.

In [1] a general strategy was described which allows HQET at zero velocity to be

implemented non-perturbatively on the lattice, including all renormalizations.

experiment Lattice with amq ¿ 1

mB = 5.4 GeV Φ1(L1, Mb), Φ2(L1, Mb)

? ?

ΦHQET
1 (L2), Φ

HQET
2 (L2) ΦHQET

1 (L1), Φ
HQET
2 (L1)¾

σm(u1)

σkin
1 (u1), σ

kin
2 (u1)

L2 = 2L1

The basic idea is illustrated in the above diagram. It is founded on the knowledge of

the relation between the RGI mass and the bare mass in QCD [20, 21]. In a finite volume

of extent L1 ≈ 0.4 fm, one chooses lattice spacings a sufficiently smaller than 1/mb, such

that the b-quark propagates correctly up to controllable discretization errors of order a2.

Finite volume observables Φi(L1,Mb) may then be computed as a function of the RGI mass

Mb including an extrapolation to the continuum limit. The resulting values are equated

to their representation in HQET — a step called matching, indicated by the r.h.s. of the

diagram. Choosing now L1/a = O(10), with the same physical value of L1, one uses the

knowledge of Φi(L1,Mb) to determine the bare parameters in the effective theory for a-

values of about 0.025 fm to 0.05 fm. At these lattice spacings one then computes the same

observables in a larger volume L2 = 2L1. Again these observables can be extrapolated

to the continuum limit. Next, the knowledge of Φi(L2,Mb) and the choice L2/a = O(10)

yields the bare parameters of the effective theory for a around 0.05 fm to 0.1 fm. One then

has full control over the effective theory at lattice spacings where large volume observables,

such as the B-meson mass, can be computed. Perturbation theory is completely avoided

with the power divergent subtractions being taken care of non-perturbatively.

We return to the specific application of computing Mb. The whole chain allows to

express mB in terms of Φi(L1,Mb) and thus as a function of Mb. This function naturally

splits into various pieces which may be computed individually as they separately have a

continuum limit. In particular, the step scaling functions σ relate Φi(L1) to Φi(L2). As we

will see below, at first order in 1/mb, two matching observables Φ1,Φ2 are sufficient if we

consider the spin averaged B-meson mass.
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The strategy requires all considered observables to be accurately described by the

1/mb expansion. Naive counting estimates the accuracy of the quark mass as Λ × Λ2

m2
b

and

Λ × 1
L2

1m2
b

. For a typical QCD scale Λ ≈ 400MeV both these terms yield the same, very

small, estimate. In [22] the 1/mb expansion was tested for an even smaller L = L0 = L1/2

and found to be well behaved, as it is also the case in perturbation theory [23]. Here we

will have additional cross checks by choosing different quantities Φi in the matching step.

In section 2 we will go through the definition of the effective theory in order to fix

some notations and give rules how the 1/mb expansion is implemented in practice. We

also discuss correlation functions in the Schrödinger functional [24, 25], which defines our

finite volume geometry. These correlation functions are then used in section 3 to form

suitable dimensionless observables Φi, followed by a section which lists the step scaling

functions. Section 4 discusses the final formula for the RGI b-quark mass Mb. Numerical

results for all quantities in the quenched approximation are discussed in section 5. This

includes also results from an alternative strategy as a check on the smallness of the 1/m2
b

terms.

2. Heavy quark effective theory on the lattice

We start from the Eichten Hill static quark Lagrangian [26], using the notation of [27], but

setting the mass counter term δm to zero. Its effect is taken into account in the overall

energy shift mbare between the effective theory and QCD. Thus mbare is regularization

dependent with a ∼ g2
0/a divergence. For the sake of a light notation, we also drop the

superscript W [27] for the different lattice discretizations of the static Lagrangian, but in

the numerical computations these different versions will be used and referred to exactly as

in that reference. We remind the reader that they differ only by the choice of the covariant

derivative D0.

The terms of first order in 1/mb are introduced exactly as in [1], but we use a slightly

different notation which is convenient when one does not go beyond that order.

2.1 Formulation

The lowest order (static) Lagrangian,

Lstat(x) = ψh(x)D0 ψh(x) , (2.1)

is written in terms of the backward covariant derivative D0 as in [27] and the 4-component

heavy quark field subject to the constraints P+ψh = ψh , ψhP+ = ψh with P+ = (1 + γ0)/2.

At the first order we write the HQET Lagrangian

LHQET(x) = Lstat(x) + L(1)(x) , (2.2)

L(1)(x) = −ωspinOspin(x) − ωkinOkin(x) , (2.3)

Ospin(x) = ψh(x)σ ·Bψh(x) Okin = ψh(x)D2ψh(x) , (2.4)

such that the classical values for the coefficients are ωkin = ωspin = 1/(2mb). We use the

discretized version σ·B =
∑

k,j σkjF̂kj/(2i) , with σkj and the lattice field tensor F̂ defined

– 3 –
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in [28]. The kinetic term D2 is represented by the nearest neighbor covariant 3-d Laplacian.

The effective theory is expected to be renormalizable at each (fixed) order in 1/mb if (and

only if) path integral expectation values are defined by expanding the path integral weight

as [1]

exp(−a4
∑

x

[LHQET(x) + Llight(x)]) = exp(−a4
∑

x

[Lstat(x) + Llight(x)]) (2.5)

×
(
1 + a4

∑

x

[ωspinOspin(x) + ωkinOkin(x)]
)

.

For correlation functions of some multilocal fields O this means

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat (2.6)

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (2.7)

where 〈O〉stat denotes the static expectation value with Lagrangian Lstat(x) + Llight(x).

All terms composed of just the relativistic quarks and the gauge fields are summarized in

Llight(x). Note that as one performs the Wick contractions of the heavy quark field, the

1/mb terms Okin(x),Ospin(x) leave behind insertions in the static heavy quark propagators.

From the point of view of renormalization all terms in eq. (2.6) are correlation functions

in the static effective theory, which is power counting renormalizable.

The above form assumes that O contains all 1/mb terms needed to represent the local

fields in the effective theory. A relevant example is the time component of the heavy light

axial current. In the effective theory it is represented as

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (2.8)

Astat
0 (x) = ψl(x)γ0γ5ψh(x) , (2.9)

δAstat
0 (x) = ψl(x)

1

2
(
←−
∇ i+

←−
∇∗

i)γiγ5ψh(x) . (2.10)

Later we will also use the space components of the vector current represented by

V HQET
k (x) = ZHQET

V [V stat
k (x) + cHQET

V δV stat
k (x)] , (2.11)

V stat
k (x) = ψl(x)γkψh(x) , (2.12)

δV stat
k (x) = −ψl(x)

1

2
(
←−
∇ i+

←−
∇∗

i)γiγkψh(x) . (2.13)

We have chosen V stat
k , δV stat

k such that they are exactly related to Astat
0 , δAstat

0 by a spin

rotation.

The coefficients ωkin, ωspin, Z
HQET
A , cHQET

A , ZHQET
V , cHQET

V are functions of the bare cou-

pling g0 and of the heavy quark mass in lattice units. They represent bare parameters of

the effective theory, which are to be fixed by matching to QCD. Just like ωkin, ωspin, the

coefficients cHQET
A , cHQET

V are of order 1/mb, while we may write

ZHQET
A = Zstat

A + Z
(1)
A , with Z

(1)
A = O(1/mb) , (2.14)
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and similarly for ZHQET
V

1. Note that in the expansion to first order, terms such as

ωkinc
HQET
A ∝ 1/m2

b are to be dropped.

Below we will consider an example and discuss that indeed the bare parameters

ωkin, ωspin, Z
HQET
A , cHQET

A , ZHQET
V , cHQET

V and mbare are sufficient to absorb all divergences

in the effective theory at this order in 1/mb.

2.2 1/mb expansion in a geometry without boundaries

In order to illustrate further how the expansion works, we consider a two-point function of a

composite field in a space-time without boundaries, i.e. with periodic boundary conditions

or in infinite volume. We choose the example

CAA(x0) = Z2
Aa3

∑

x

〈
A0(x)(A0)

†(0)
〉

(2.15)

with the heavy-light axial current in QCD, Aµ = ψlγµγ5ψb, and ZA ensuring the natural

normalization of the current consistent with current algebra [29, 30]. The 1/mb expansion

reads

CAA(x0) = e−mbarex0(ZHQET
A )2a3

∑

x

[
〈Astat

0 (x)(Astat
0 (0))†〉stat (2.16)

+ ωkin 〈A
stat
0 (x)(Astat

0 (0))†〉kin + ωspin〈A
stat
0 (x)(Astat

0 (0))†〉spin

+ cHQET
A 〈Astat

0 (x)(δAstat
0 (0))†〉stat + cHQET

A 〈δAstat
0 (x)(Astat

0 (0))†〉stat

]

≡ e−mbarex0(ZHQET
A )2

[
Cstat

AA (x0) + ωkinC
kin
AA(x0) + ωspinC

spin
AA (x0)

+cHQET
A [Cstat

δAA(x0) + Cstat
AδA(x0)]

]
(2.17)

up to terms of order 1/m2
b. As mentioned in the introduction, the mass shift mbare = O(mb)

includes an additive mass renormalization. It is also split up as

mbare = mstat
bare + m

(1)
bare , with m

(1)
bare = O(1/mb) , (2.18)

and the expansion e−mbare x0 ≡ e−mstat
bare

x0(1 − x0m
(1)
bare) is understood.

For illustration we check the self consistency of eq. (2.17). The relevant question

concerns renormalization, namely: are the “free” parameters mbare . . . cHQET
A sufficient to

absorb all divergences on the r.h.s.? We consider the most difficult term, Ckin
AA(x0). Ac-

cording to the standard rules of renormalization of composite operators, it is renormalized

as

(
Ckin

AA

)
R
(x0) = e−mstat

bare
x0

(
Zstat

A

)2
a7

∑

x, z

〈
Astat

0 (x) (Astat
0 (0))†

(
Okin

)
R
(z)

〉
stat

+ C.T. ,

(2.19)

1If O(a) improvement is desired in the static approximation, there are also a δAstat
0 , a δV stat

k corrections

to the currents. They are not relevant in the present discussion but will be taken into account when

necessary.
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where C.T. denotes contact terms to be discussed shortly. The renormalized operator(
Okin

)
R
(z) involves a subtraction of lower dimensional ones,

(
Okin

)
R
(z) = ZOkin

(
Okin(z) +

c1

a
ψh(z)D0ψh(z) +

c2

a2
ψh(z)ψh(z)

)
, (2.20)

written here in terms of dimensionless ci. Since we are interested in on-shell observables

(x0 > 0 in eq. (2.19)), we may use the equation of motion D0ψh(z) = 0 to eliminate the

second term. The third one, c2
a2 ψh(z)ψh(z), is equivalent to a mass shift and only changes

m
(1)
bare, which is hence quadratically divergent 2. Thus all terms which are needed for the

renormalization of Okin are present in eq. (2.17). It remains to consider the contact terms

in eq. (2.19). They originate from singularities in the operator products Okin(z)Astat
0 (x) as

z → x (and Okin(z)
(
Astat

0

)†
(0) as z → 0). Using the operator product expansion they can

be represented as linear combinations of Astat
0 (x) and δAstat

0 (x). Such terms are contained

in eq. (2.17) in the form of Cstat
AA , Cstat

δAA and Cstat
AδA

3.

We conclude that all terms which are needed for the renormalization of Ckin
AA(x0) are

present in eq. (2.17); the parameters may thus be adjusted to absorb all infinities and with

properly chosen coefficients the continuum limit of the r.h.s. is expected to exist. The basic

assumption of the effective field theory is that once the finite parts of the coefficients have

been determined by matching a set of observables to QCD, these coefficients are applicable

to any other observables.

The B-meson mass is given by CAA(x0) in large volume via

mB = − lim
x0→∞

∂0 + ∂∗
0

2
log CAA(x0) , (2.21)

with

∂0f(x0) =
1

a
[f(x0 + a) − f(x0)] , ∂∗

0f(x0) =
1

a
[f(x0) − f(x0 − a)] . (2.22)

Inserting the HQET expansion we derive

mB = mstat
B + m

(1)
B , (2.23)

with

mstat
B = mstat

bare + Estat , Estat = − lim
x0→∞

∂0 + ∂∗
0

2
log Cstat

AA (x0) , (2.24)

m
(1)
B = m

(1)
bare + ωkinEkin + ωspinEspin , (2.25)

Ekin = − lim
x0→∞

∂0 + ∂∗
0

2

[
Ckin

AA(x0)/C
stat
AA (x0)

]
, (2.26)

2Using the explicit form of the static propagator, eq. (2.4) of reference [27], one can check that indeed

a3
P

x

D
Astat

0 (x) (Astat
0 (0))†a4

P
z
ψh(z)ψh(z)

E
stat

= x0C
stat
AA (x0).

3Astat
0 (x) and δAstat

0 (x) are the only operators of dimension 3 and 4 with the correct quantum numbers.

Higher dimensional operators contribute only terms of order a. Note that the Astat
0 (x) term is power

divergent ∼ 1/(amb). This divergence is absorbed by a power divergent contribution to ZHQET
A (at order

1/mb).
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Espin = − lim
x0→∞

∂0 + ∂∗
0

2

[
Cspin

AA (x0)/C
stat
AA (x0)

]
. (2.27)

Here the terms ∝ cHQET
A of eq. (2.17) do not contribute. They are proportional to the

derivative of ratios Cstat
δAA(x0)/C

stat
AA (x0). At large x0 these ratios approach a constant since

δAstat
0 has the same quantum numbers as Astat

0 . Using the transfer matrix formalism (with

normalization 〈B|B〉 = 1), one further observes that

Ekin = −〈B|a3
∑

z

Okin(0, z)|B〉stat , Espin = −〈B|a3
∑

z

Ospin(0, z)|B〉stat . (2.28)

As expected, only the parameters of the action are relevant in the expansion of a hadron

mass. In the above relations mstat
bare absorbs a linear divergence of Estat and m

(1)
bare a quadratic

divergence of Ekin.

Going through the same steps in the vector channel and using the spin symmetry of

the static action is one way to see that the combination

mav
B ≡

1

4
[mB + 3mB∗ ] = mbare + Estat + ωkinEkin (2.29)

is independent of ωspin. It is instructive to represent this equation in a different way,

subtracting the 1/a (and 1/a2) divergences of Estat (and Ekin). In this way we have

mav
B = m

(0a)
B + m

(0b)
B + m

(1a)
B + m

(1b)
B , (2.30)

m
(0a)
B = mstat

bare + Esub
stat , (2.31)

m
(0b)
B = Estat − Esub

stat , (2.32)

m
(1a)
B = m

(1)
bare + ωkinE

sub
kin , (2.33)

m
(1b)
B = ωkin[Ekin − Esub

kin ] , (2.34)

with finite terms m
(0a)
B ,m

(0b)
B ,m

(1a)
B ,m

(1b)
B . Our strategy, described in the introduction can

be seen as a way of determining the coefficient ωkin as well as the subtractions Esub
stat, E

sub
kin

from finite volume computations in QCD and HQET. Finite parts in the subtraction terms

do of course depend on the detailed choice of kinematical parameters such as the matching

volume, but the end result is unique up to terms of order 1/m2
b. Note that by the same

logics, the order 1/mb term, m
(1a)
B + m

(1b)
B , is not unique but depends on the details of the

strategy.

Since the prediction eq. (2.29) requires only the knowledge of two parameters, we

also need only two finite volume observables to perform the matching with QCD. The

Schrödinger functional is particularly useful to find suitable observables [1, 31, 22]. We

proceed to discuss the 1/mb expansion in this situation.

2.3 Schrödinger functional correlation functions

The pure gauge Schrödinger functional has thoroughly been discussed in [24], relativistic

and static quarks were introduced in [25] and [28]. In particular in the last reference

also Symanzik O(a)-improvement was discussed. The improvement of the Schrödinger

– 7 –
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functional requires the addition of dimension four local composite fields localized at the

boundaries [32]. However, it turns out that there are no dimension four composite fields

which involve static quarks fields and which are compatible with the symmetries of the

static action and the Schrödinger functional boundary conditions and which do not vanish

by the equations of motion. Thus there are no O(a) boundary counter terms with static

quark fields. For the same reason there are also no O(1/mb) boundary terms in HQET.

This then means the HQET expansion of the boundary quark fields ζ, ζ̄ is trivial up to and

including 1/mb terms.

For details of the boundary conditions as well as the definition of the fields ζ, ζ̄ we refer

to [28], where also our notation is explained. For a general understanding it is, however,

sufficient to note a few facts. In space the fermion fields are taken to be periodic up to a

phase,

ψ(x + k̂L) = eiθψ(x) , ψ(x + k̂L) = e−iθψ(x) , (2.35)

with the same phase θ for all quark fields, whether relativistic or described by HQET.

In time we take homogeneous Dirichlet boundary conditions at x0 = 0 and x0 = T [28].

Correlation functions can be formed from composite fields in the bulk, 0 < x0 < T , and

boundary quark fields ζ , ζ̄. In QCD, correlation functions in the pseudoscalar and vector

channel are

fA(x0, θ) = −
a6

2

∑

y,z

〈
(AI)0(x) ζb(y)γ5ζl(z)

〉
, (2.36)

kV(x0, θ) = −
a6

6

∑

y,z,k

〈
(VI)k(x) ζb(y)γkζl(z)

〉
. (2.37)

The O(a) improved currents AI, VI can be found in [1]. Furthermore we consider boundary

to boundary correlation functions

f1(θ) = −
a12

2L6

∑

u,v,y,z

〈
ζ l

′(u)γ5ζ
′
b(v) ζb(y)γ5ζl(z)

〉
, (2.38)

k1(θ) = −
a12

6L6

∑

u,v,y,z,k

〈
ζ l

′(u)γkζ
′
b(v) ζb(y)γkζl(z)

〉
. (2.39)

Their renormalization is standard [33], for example

[fA]R (x0, θ) = ZAZ2
ζ fA(x0, θ) , [f1]R (θ) = Z4

ζ f1(θ) , (2.40)

with Zζ a renormalization factor of the relativistic boundary quark fields.

In complete analogy to the case of a manifold without boundary we can write down

the expansions to first order in 1/mb. They read

[fA]R = ZHQET
A ZζhZζe

−mbarex0

{
f stat
A + cHQET

A f stat
δA + ωkinf

kin
A + ωspinf

spin
A

}
, (2.41)

[kV]R = ZHQET
V ZζhZζe

−mbarex0

{
kstat
V + cHQET

V kstat
δV + ωkink

kin
V + ωspink

spin
V

}
, (2.42)
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= −ZHQET
V ZζhZζe

−mbarex0

{
f stat
A + cHQET

V f stat
δA + ωkinf

kin
A − 1

3ωspinf
spin
A

}
,

[f1]R = Z2
ζh

Z2
ζ e−mbareT

{
f stat
1 + ωkinf

kin
1 + ωspinf

spin
1

}
, (2.43)

[k1]R = Z2
ζh

Z2
ζ e−mbareT

{
f stat
1 + ωkinf

kin
1 − 1

3ωspinf
spin
1

}
. (2.44)

Apart from

f stat
δA (x0, θ) = −

a6

2

∑

y,z

〈
δAstat

0 (x) ζh(y)γ5ζl(z)
〉

(2.45)

the labeling of the different terms follows directly the one introduced in eq. (2.7). We have

used identities such as fkin
A = −kkin

V , f spin
A = 3kspin

V . As a simple consequence of the spin

symmetry of the static action, these are valid at any lattice spacing.

3. Finite volume observables and step scaling functions

3.1 Observables

We concentrate on a strategy based on the correlation functions f1, k1 alone. This is

advantageous, since the additional coefficients cHQET
A , cHQET

V in eq. (2.41), eq. (2.42) are

avoided. Apart from the b-quark, we set the masses of all quarks to zero.

In terms of the spin-averaged combination,

F1(L, θ) =
1

4

[
log f1(θ) + 3 log k1(θ)

]
, (3.1)

we form

R1(L, θ1, θ2) = F1(L, θ1) − F1(L, θ2) at T = L/2 (3.2)

Γ1(L, θ0) = −
∂T + ∂∗

T

2
F1(L, θ0) at T = L/2 . (3.3)

Note that the boundary quark wave function renormalization cancels in R1 and in Γ1.

They are thus finite after renormalization of the parameters of the Lagrangian.

The dimensionless observables,

Φ1(L,Mb) = R1(L, θ1, θ2) − Rstat
1 (L, θ1, θ2) , (3.4)

Φ2(L,Mb) = LΓ1(L, θ0) , (3.5)

Rstat
1 (L, θ1, θ2) = log

[
f stat
1 (L, θ1)/f

stat
1 (L, θ2)

]
at T = L/2 (3.6)

are parametrized in terms of the RGI mass of the b-quark, Mb. They have a particularly

simple 1/mb expansion

Φ1(L,Mb) = ωkinR
kin
1 (L, θ1, θ2) , (3.7)

Φ2(L,Mb) = L
[
mbare + Γstat

1 (L, θ0) + ωkinΓ
kin
1 (L, θ0)

]
, (3.8)

which involves

Rkin
1 (L, θ1, θ2) =

fkin
1 (L, θ1)

f stat
1 (L, θ1)

−
fkin
1 (L, θ2)

f stat
1 (L, θ2)

at T = L/2 , (3.9)
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Γstat
1 (L, θ0) = −

∂T + ∂∗
T

2
log f stat

1 (θ0) at T = L/2 , (3.10)

Γkin
1 (L, θ0) = −

∂T + ∂∗
T

2
[fkin

1 (θ0)/f
stat
1 (θ0)] at T = L/2 . (3.11)

The θ0, θ1, θ2 dependence of Φi is not explicitly written, but will of course be relevant in

the numerical results. For the reader familiar with [34, 1], we point out that Γ1 differs from

Γ which was used in those references. Note that in eq. (3.4) we subtract the static term.

This simplifies subsequent formulae. In fact, whenever such a lowest order contribution

is universal (in the sense of having a universal continuum limit) and independent of an

HQET parameter, it will be convenient to subtract it. Despite this subtraction, we refer

to Φ1 as an observable in QCD.

The reader may be surprised that we introduce the quantity Γ1 which contains a

(discretized) derivative with respect to the time extent, T . Its MC evaluation requires two

separate simulations 4. However, obviously a quantity of order mb is needed and this is

obtained from some logarithmic derivative of a correlation function. Boundary-to-boundary

correlation functions are then very convenient since one does not have to deal with the 1/mb

corrections to the currents. It is a useful feature of the Schrödinger functional that such

gauge invariant correlation functions are available.

3.2 Step scaling functions

We turn to the relations between Φi(L,Mb) and Φi(2L,Mb) in the effective theory. The

dimensionful variable L is replaced by the Schrödinger functional renormalized coupling

ḡ2(L) [35] over which we have good control in numerical computations [20]. Straightforward

substitution yields

Φ1(2L,Mb) = σkin
1 (u)Φ1(L,Mb) , (3.12)

Φ2(2L,Mb) = 2Φ2(L,Mb) + σm(u) + σkin
2 (u)Φ1(L,Mb) , (3.13)

where always u = ḡ2(L). Our continuum step scaling functions σ (with any subscripts or

superscripts) are defined in terms of those at finite lattice spacing as

σ(u) = lim
a/L→0

Σ(u, a/L) . (3.14)

At finite lattice spacing we have

Σkin
1 (u, a/L) =

Rkin
1 (2L, θ1, θ2)

Rkin
1 (L, θ1, θ2)

∣∣∣∣
u=ḡ2(L)

, (3.15)

Σkin
2 (u, a/L) =

2L [Γkin
1 (2L, θ0) − Γkin

1 (L, θ0)]

Rkin
1 (L, θ1, θ2)

∣∣∣∣
u=ḡ2(L)

, (3.16)

Σm(u, a/L) = 2L
[
Γstat

1 (2L, θ0) − Γstat
1 (L, θ0)

]
u=ḡ2(L)

. (3.17)

4In appendix C we discuss a different strategy, which is based on the x0-derivative of fA and thus requires

less simulations. Note, however, that these additional simulations do not represent a significant effort.
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The above equations are easily derived. In a first step, just from the 1/mb expansions

of Φi, one obtains them at a given resolution a/L or equivalently at fixed bare coupling,

g0. One then uses that Φi(L,Mb) are dimensionless physical observables with a continuum

limit. Since the self energy of a static quark cancels in σm, also that quantity has a finite

continuum limit. Thus the continuum limit of the step scaling functions Σm,Σkin
i exists

and eqs. (3.12,3.13) can be written in terms of continuum quantities, as we have done.

4. Mb including 1/mb corrections

Before giving the equation for Mb, we recall the overall strategy. For L1 ≈ 0.4 fm we com-

pute Φ1(L1,Mb),Φ2(L1,Mb) for a few quark masses around the physical one in quenched

QCD. It is understood that the continuum limit is reached by an extrapolation and with a

suitable interpolation of Φi in Mb, these quantities can be considered to be known as a func-

tion of Mb. With the step scaling functions described in the previous section and computed

in the effective theory, we then arrive at Φ1(L2,Mb),Φ2(L2,Mb), where L2 = 2L1. It re-

mains to express the spin averaged B-meson mass mav
B in terms of Φ1(L2,Mb),Φ2(L2,Mb).

To this end, we straightforwardly combine eqs. (3.7,3.8) with eq. (2.29) and obtain

Lmav
B = Φ2(L,Mb) + L[Estat − Γstat

1 (L, θ0)] +
L[Ekin − Γkin

1 (L, θ0)]

Rkin
1 (L, θ1, θ2)

Φ1(L,Mb) .

(4.1)

We now set L = L2 in this equation and insert eq. (3.13). In the form of eq. (2.30) we then

have

L2m
(0a)
B (Mb) = σm(u1) + 2Φ2(L1,Mb) (4.2)

L2m
(0b)
B = L2[E

stat − Γstat
1 (L2, θ0)] , (4.3)

L2m
(1a)
B (Mb) = σkin

2 (u1)Φ1(L1,Mb) , (4.4)

L2m
(1b)
B (Mb) = L2

Ekin − Γkin
1 (L2, θ0)

Rkin
1 (L2, θ1, θ2)

σkin
1 (u1)Φ1(L1,Mb) , (4.5)

where

u1 = ḡ2(L1) , L2 = 2L1 . (4.6)

The subtraction of power divergences in eq. (2.32), eq. (2.34) are Esub
stat = Γstat

1 (L2, θ0),

Esub
kin = Γkin

1 (L2, θ0) and σkin
1 (u1)Φ1(L1,Mb)/Rkin

1 (L2, θ1, θ2) is a representation of the bare

parameter ωkin in eq. (2.34). The other parts, m
(0a)
B ,m

(1a)
B , are computable entirely in finite

volume.

The step scaling functions σ have been discussed before. They can be computed with

lattice spacings such that a/L1 is reasonably small, say below 1/6. Of course they should

be extrapolated to the continuum. We work with lattice spacings a ≤ 0.07 fm in this step.

The relativistic observables Φi(L1,Mb) , i = 1, 2 are computed for a ≤ 0.02 fm, where a

relativistic b-quark can be described by the O(a)-improved Wilson action with controlled
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a2-effects. Finally, the combinations L2[E
stat − Γstat

1 (L2, θ0)] and L2
Ekin−Γkin

1 (L2,θ0)

Rkin
1 (L2,θ1,θ2)

are

computed for lattice spacings of a ≤ 0.1 fm such that finite size effects in Estat and Ekin

are negligible on lattices with an affordable number of points.

The mass of the b-quark is obtained from eq. (2.30) by expanding

Mb = M
(0)
b + M

(1)
b , (4.7)

where M
(0)
b is the solution of the static equation

mav
B = m

(0a)
B (M

(0)
b ) + m

(0b)
B (M

(0)
b ) (4.8)

and the 1/mb correction is

M
(1)
b = −

1

S

[
m

(1a)
B (M

(0)
b ) + m

(1b)
B (M

(0)
b )

]
(4.9)

with

S =
d

dMb

[
m

(0a)
B (Mb) + m

(0b)
B (Mb)

]
=

d

dMb
[m

(0a)
B (Mb)

]
. (4.10)

We finish the discussion of the strategy with a remark on the dependence on the mass of

the light quarks. This is relevant because it is of course better to consider the spin-averaged

Bs quark mass in eq. (2.29); the necessary large volume computations are easier than for

the Bd meson. In the quenched approximation the parameters in the action mbare, ωkin are

independent of the light quark mass.5 Since our strategy determines them through finite

volume computations, it follows that in all these computations the light quark mass may

be set to zero, a convenient choice. Only Ekin and Estat are then to be computed at the

mass of the light quark of the meson who’s (spin averaged) mass is considered.

5. Results

We have performed a numerical computation in the quenched approximation, using the

O(a) improved Wilson action [41, 32, 42]. The box size L2 is chosen as L2 = 1.436r0, where

r0, defined in terms of the static quark potential [43], has a phenomenological value of r0 ≈

0.5 fm. From [20] we know the Schrödinger functional coupling ḡ2(L1) = ḡ2(L2/2) ≈ 3.48.

Given the knowledge of r0/a as a function of g0 of ref. [44] and that of the renormalized

coupling [20], it is then convenient to fix g0 in different ways for the different steps of the

calculation. The differences are of course only a-effects which disappear in the continuum

extrapolations. We give more details below. We will take the uncertainties in the relations

ḡ2(L1) ≈ 3.48 and ḡ2(L1/4) ≈ 1.8811 (which we need later) into account in the very end.

In order to complete our definitions, we further choose θ0 = 0 and θ1, θ2 ∈ {0, 1/2, 1}.

The different values of θ1, θ2 offer the possibility to check whether our final results are

independent of these arbitrary parameters as they should be up to small 1/m2
b terms.

Simulation parameters as well as raw results are listed in tables in appendix A and B.

5In general, δm (and hence also mbare) will contain a term like b(g0)ml, where for simplicity the light

quarks are assumed to be degenerate with mass ml. Obviously, b(g0) = O(g4
0) does, however, vanish for

Nf = 0. As a renormalization term odd in ml, it is also absent for twisted mass lattice QCD [36] and QCD

with exact chiral symmetry [37 – 40].
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Figure 1: Continuum extrapolation of Φ2(L1, Mb), for z = 10.4 , 12.1 , 13.3 from bottom to

top. The errors in the relation between bare quark mass m̃q and the RGI mass M are translated

into errors in Φ2. The g0–independent part of that error is included after [31] the continuum

extrapolation (left side error bar). On the right, the equivalent in the alternative strategy is shown

for θ0 = 1/2 (see appendix C).

5.1 QCD observables

For this part of the computation, we determined the bare parameters as in [31]: g0 is fixed

by requiring ḡ2(L1/4) = 1.8811 for given resolutions a/L. The PCAC mass of the light

quark, defined exactly as in that reference, is set to zero. Our heavy quark masses are

chosen such that z = Mb L1 ≈ 10 − 13 . The bare parameters are listed in table 3.

We focus our attention directly on the continuum extrapolations. As an example we

show Φ1(Mb, L1) and Φ2(Mb, L1) in Fig. 2 and Fig. 1. Note that for the static subtraction

Rstat
1 (L1, 1/2, 1), displayed on the right of Fig. 2, our lattice spacings are roughly a factor

three larger, since in the effective theory we only have to respect a/L1 ¿ 1, not aMb ¿ 1

(for details see appendix A). Data have been obtained for two static actions, HYP1 and

HYP2 [27]. In fitting them to the expected a-dependence, their continuum limit value is

constrained to be independent of the action, but the a2 slopes are of course different. The

data for the different actions are highly correlated. As in all such cases, the errors of the

continuum limit are computed from jacknife samples.

For values of θi which differ from the choice made in the figures, the a-dependence

is very similar. In all these cases we find that extrapolations linear in a2 using all four

available lattice spacings are compatible with the ones where the data point at largest

lattice spacing is ignored. We take the extrapolations with three points as our results for

further analysis, since they have the more conservative error bars. The continuum limits

are listed together with the raw numbers in tables 6 and 4. From a fit of the continuum

Φ2(z) to a linear function, we then extract the slope

S =
d

dz
Φ2 = 0.61(5) (5.1)

– 13 –



J
H
E
P
0
1
(
2
0
0
7
)
0
0
7

0 0.001 0.002
(a/L

1
)
2

0.2

0.25

R
1

0.2

0 0.01 0.02
(a/L

1
)
2

0.2

0.25

R
1

stat

0.2

Figure 2: Continuum extrapolation of Φ1(L1, Mb), separately for R1(L1, 1/2, 1) in QCD (left) and

for Rstat
1 (L1, 1/2, 1) in the static approximation (right). Circles denote results with action HYP1

and squares, displaced slightly for visibility, are from action HYP2. The corresponding continuum

extrapolation lines are slightly displaced as well.

and we are done with the matching. The rest of the numerical computations is carried out

in the effective theory.

5.2 HQET step scaling functions

Next we discuss the connection of Φi(L1,Mb) to Φi(L2,Mb), L2 = 2L1. It is given by the

step scaling functions of section 3.2. The bare parameters used in their computation are

described in appendix A, and the values at finite resolution a/L1 are given in tables 8-10 6.

At lowest order in 1/mb, only σm contributes. In its continuum extrapolation (Fig. 3,

table 8) we allow for a slope in a2, although the data are compatible with a vanishing slope.

Note that the absolute error of σm is negligible in comparison to twice the one of Φ2 (see

Fig. 1) to which it is added in eq. (4.2). In fact the uncertainty in σm corresponds to an

error of only 5MeV in the b-quark mass, illustrating the possible precision in the static

effective theory with these actions [27, 45].

A relevant question is how the precision deteriorates when one includes the first order

corrections in 1/mb. Then two more step scaling functions contribute. In Fig. 4, we

illustrate how the continuum limit of σkin
1 is obtained. Here we have to allow for a linear

dependence on the lattice spacing, since the theory is not O(a) improved at the level of the

1/mb contributions [1]. Taking the more conservative fit with only three points, we arrive

at the continuum limit listed in table 9 for all combinations θ1, θ2. In eq. (4.5), σkin
1 is

multiplied by small numbers (of order 1/mb). This means that its error will be negligible

in the overall error budget.

6For Σm, Σkin
2 the coarsest resolution considered is a/L1 = 8. Due to the derivative ∂T at T = L/2,

smaller values of L1/a would involve a very short time separation.
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Figure 3: Continuum extrapolation of Σm and Σ̃m.
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a/L
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Σ
1

kin

Figure 4: Continuum extrapolation of Σkin
1 for θ1 = 1/2, θ2 = 1.

Instead of σkin
2 we show directly the continuum extrapolation of m

(1a)
B , eq. (4.4). As for

Σm, the data shows no significant a-dependence. Nevertheless, in order to have a realistic

error estimate, we allow for a linear slope in a (Fig. 5). In table 10 we list the raw numbers

for Σkin
2 as well as the extracted continuum limit for further analysis.
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Figure 5: Lattice spacing dependence of L2m
(1a)
B for Mb = M

(0)
b . On the left we show m

(1a)
B

as introduced in section 4, with θ1 = 1/2, θ2 = 1. We insert Φ1 in the continuum limit, such

that the lattice spacing dependence is just due to Σkin
2 . On the right the corresponding quantity is

shown for the alternative strategy of appendix C, again with continuum values for Φ̃i. There we

set θ0 = 1/2 , θ1 = 1/2 , θ2 = 1.
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2
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Figure 6: Lattice spacing dependence of L2m
(0b)
B , details as in Fig. 5.

5.3 Large volume matrix elements and Mb

The last missing pieces in eq. (2.30) are the large volume static energy Estat, eq. (2.24),

and the matrix element of the kinetic operator Ekin, eq. (2.28). Here, in contrast to the

rest of our numerical evaluations, the light quark mass is set to the mass of the strange

quark in order to avoid a chiral extrapolation. The spin averaged mass of the Bs system is

then to be inserted into eq. (2.29).

Although Estat and Ekin can be computed with periodic boundary conditions we here

follow [46] and evaluate also these quantities with Schrödinger functional boundary condi-

tions in a large volume of about T × (1.5 fm)3, with 1.5 fm ≤ T ≤ 3 fm (also a check for

finite size effects is carried out). The extraction is fairly standard, but still care has to be
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Figure 7: Lattice spacing dependence of L2m
(1b)
B , details as in Fig. 5.

taken to make sure that the ground state contribution is obtained. This is a particularly

relevant issue for B-physics, because the gap to the first excited state is rather small. We

relegate details to appendix B and discuss immediately the universal combinations L2m
(0b)
B ,

L2m
(1b)
B which enter in eq. (2.30). The static contribution, shown in Fig. 6, is known with

very good precision 7. In contrast, the 1/mb correction L2m
(1b)
B does have a noticeable

total uncertainty (Fig. 7, table 1). Still, this error is only about 50% of the one on 2Φ2.

Note also that this error is almost entirely due to Ekin which may possibly be computed

more precisely by other techniques [47].

We now have all pieces necessary to solve the equations for Mb. The static one,

eq. (4.8), is illustrated in Fig. 8. The horizontal error band is given by subtracting the

static pieces σm + L2m
(0b)
B from the experimental number

mav
B = 5.405GeV . (5.2)

The figure demonstrates again that the main source of error is contained in the QCD

computation of Φ2. Finally, by interpolating Φi(L1,Mb) to Mb = M
(0)
b we obtain (θ1 =

1/2, θ2 = 1)

r0 M
(0)
b = 17.25(20) , M

(0)
b = 6.806(79)GeV for r0 = 0.5 fm (5.3)

r0 M
(1)
b = −0.12(9) , M

(1)
b = −0.049(39)GeV for r0 = 0.5 fm (5.4)

r0 Mb = 17.12(22) , Mb = 6.758(86)GeV for r0 = 0.5 fm . (5.5)

Here the small difference ḡ2(L1/4)−1.8811 as well as the statistical uncertainties in ḡ2(L1)

and L1/r0 have been taken into account, as explained in appendix D. Moreover, one

can see in table 1 that the θi dependence of the 1/mb contribution is absorbed. With

7We show the results given for the static action HYP2. The continuum extrapolation with action HYP1

looks very similar, but the fit has a smaller χ2.
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θ1 θ2 r0M
(1a)
b r0M

(1b)
b

0 1/2 -0.06(3) -0.06(8)

1/2 1 -0.06(3) -0.06(8)

1 0 -0.06(3) -0.06(8)

Table 1: RGI results of 1/mb correction of the b-quark mass, in units of r0.
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1
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2Φ
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~

Figure 8: Graphical solution of eq. (4.8). On the left hand side, data points are 2Φ2 and the

horizontal error band is L2m
av
B − σm − L2[E

stat − Γstat
1 (L2, θ0)]. On the right hand side, the

analogous terms are shown for the alternative strategy (θ0 = 1/2, see section 5.4).

ΛMSr0 = 0.602(48) [35, 48], the 4-loop β function and the mass anomalous dimension [49 –

52], we translate Mb = M
(0)
b + M

(1)
b to the mass in the MS scheme at its own scale,

mb(mb) = 4.347(48)GeV ; (5.6)

the associated perturbative uncertainty can safely be neglected. For completeness we note

that in the MS scheme the 1/mb term amounts to −27(22)MeV.

5.4 Comparison to results from an alternative strategy

As mentioned earlier, at first sight it appears more natural to base the computation of

Mb on the logarithmic derivative of the spin average of fA and kV as the prime finite

volume quantity. We have not chosen this option as our standard strategy since then three

observables are needed for matching. However, it is useful to consider also that alternative

strategy in order to perform an explicit check that 1/m2
b terms are as small as expected.

The results can be appreciated without detailed definitions of the observables and step

scaling functions, the interested reader can find them in appendix C. Here we note that

within this alternative strategy we actually have nine different sets of {Φ̃1, Φ̃2, Φ̃3}. Only

one observable, Φ̃1 = Φ1, is in common to the two strategies. For our graphs we have

selected (arbitrarily) one choice of parameters.
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θ1 θ2 r0 (M
(0)
b + M

(1a)
b + M

(1b)
b )

Main strategy Alternative strategy

θ0 = 0 θ0 = 1/2 θ0 = 1

0 1/2 17.12(22) 17.25(28) 17.23(28) 17.17(32)

1/2 1 17.12(22) 17.23(27) 17.21(27) 17.14(30)

1 0 17.12(22) 17.24(27) 17.22(28) 17.15(30)

Table 2: RGI results of Mb inlcuding the 1/mb correction, and comparison of the two strategies.

First, let us summarize what kind of differences one expects in such a comparison

apart from a-effects. In the order of magnitude counting, we take L−1
1 ∼ Λ ∼ 0.5GeV

and of course L2 = 2L1. The matching observables Γ1,Γ
av are constructed to be equal to

the quark mass at the leading order in the HQET expansion. They start to differ at the

next to leading order, which means by terms of order Λ. Also their dependence on θi is

of that magnitude. Since Φ2(L1,Mb) and Φ̃3(L1,Mb) have been made dimensionless by

multiplication with L1 and L1 happens to be around Λ−1, the differences of Φ2(L1,Mb)

and Φ̃3(L1,Mb) are order one. The step scaling functions σm, σ̃m as well as L2m
(0b)
B are

added to Φ2 (or Φ̃3) to obtain L2mB in static approximation. Thus they depend on the

details at the same level, apart from a trivial L2/L1 = 2 factor. Of course, in the total

static estimate r0M
(0)
b this dependence is reduced to r0Mb × (Λ/mb)2 ∼ 1/5. In the same

way, the 1/mb corrections L2m
(1a)
B , L2m

(1b)
B themselves have a dependence on the matching

conditions which is L2 × Λ2/mb ∼ 1/5 but the final result r0Mb including these terms is

accurate and unique up to r0 × (Λ3/mb)
2 ∼ 1/50 corrections.

We leave it to the reader to check in figure 1 to 7 that these expectations are fully

satisfied by our results 8. In fact it appears that our estimate for the expansion parameter,

Λ/mb ∼ 1/10 is quite realistic. Of course, to find this out requires an explicit computation

of the correction terms as presented here. In some cases, such as m
(1b)
B , our precision is not

good enough to resolve a dependence on the matching conditions.

In the b-quark mass in the static approximation, r0M
(0)
b (eq. (5.3) and table 12), the

maximum difference is 0.5(2), which is of the predicted order of magnitude. Finally, when

we add all contributions together, the results from the alternative strategy, table 2, are fully

in agreement with eq. (5.5). As expected 1/m2
b terms are not visible with our precision.

They can safely be neglected.

6. Conclusions

The main conclusion of this work is that fully non-perturbative computations in lattice

HQET, as they have been suggested in [1], are possible in practice. In particular, the

uncertainties in the 1/mb corrections are smaller than those in the static approximation,

8We note in passing that fΣm, in contrast to Σm, does in principle require an improvement coefficient,

cstat
A [28], for O(a)-improvement. It has been set to the 1-loop values from [27], but the results are rather

insensitive to cstat
A , so its uncertainty can be neglected.
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despite the fact that we numerically cancel large a−2 divergences in the 1/mb terms. The

final error in the mass of the b-quark is dominated by the uncertainty in the renormalization

in QCD. Errors due to simulations in the effective theory can almost be neglected in

comparison.

A very nice result is the independence of the final numbers for Mb of the matching

condition: table 2 shows that within our reasonably small uncertainties, we get the same

results for the quark mass for altogether twelve different matching conditions. This is

expected up to very small terms of order r0Mb×(Λ/mb)3 ∼ 0.02, which should be compared

to our result r0Mb = 17.12(22) − 17.25(28). Here the quoted range is due to the different

matching conditions. In the order of magnitude estimates we have made a guess for the

typical scale of Λ ∼ 0.5GeV. In the static approximation, some of the matching conditions

yield slightly differing results for the quark mass in agreement with the expectation for

such variations of r0Mb × (Λ/mb)2 ∼ 0.2.

Both this explicit test of the magnitude of the different orders in the expansion and

the naive order of magnitude estimate say that 1/m2
b corrections are completely negligible.

Still, in aspects of the computation, considerable improvement can be envisaged. For

example, return to the 1/mb contribution to the B-meson mass Fig. 7. The statistical errors

grow rapidly as one decreases the lattice spacing. The by far dominating uncertainty in the

shown combination is the one of the large volume matrix Ekin. It appears worth while to

look for improvements, maybe along the line of [53]. Due to these errors, and of course the

missing O(a)-improvement of the theory at order 1/mb [1], the continuum extrapolation is

not easy. Fortunately it is still precise enough for the present case. It will be very interesting

to see cases where the 1/mb corrections are larger, as it is expected, for example, for FB.

Let us now turn to the computed value of mb, eq. (5.6). Starting from a precisely

specified input, namely r0, mK and (mBs + 3mB∗
s
)/4, the value of Mb is unambiguous

in the quenched approximation, because these inputs fix the bare coupling, strange and

beauty quark masses. We have used the experimental meson masses and r0 = 0.5 fm.

Our numbers for Mb or mb may then be used as a benchmark result for other methods.

Indeed, a comparison shows agreement with [54] and the recent extension of that work [55]

mb = 4.42(7)GeV.

Earlier, the review [56] quoted mb = 4.30(5)(5)GeV and mb = 4.34(3)(6)GeV, based

on static computations [57] and an extrapolation of NRQCD results to the static limit [58]

respectively. A perturbative subtraction [18, 59, 60] of the linear divergence δm was carried

out in these static estimates and, of course, a continuum extrapolation could not be done.

However, if other inputs are used, the result may change because r0 is only approxi-

mately known and because the quenched approximation is not real QCD. A rough idea on

the possible changes can be obtained by varying r0 by ±0.05 fm. This changes mb(mb) by

roughly ±80MeV.

These remarks just serve to stress the obvious necessity of performing computations

with Nf > 0. The ALPHA-collaboration is presently starting with Nf = 2, where the

renormalization of the quark mass in QCD is known [21]. The necessary HQET compu-

tations are not expected to be a big numerical challenge, apart from the large volume

B-meson matrix elements: simulations of the Schrödinger functional for L ≤ 1 fm are not
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L
a β κl ḡ2(L

4 ) ZP(g0,
L
2 ) bm Z κh

20 7.2611 0.134145 1.8811(19) 0.6826(3) −0.621 1.0955 0.124195

0.122119

0.120483

24 7.4082 0.133961 1.8811(22) 0.6764(6) −0.622 1.0941 0.126055

0.124528

0.123383

32 7.6547 0.133632 1.8811(28) 0.6713(8) −0.622 1.0916 0.127991

0.126967

0.126222

40 7.8439 0.133373 1.8811(22) 0.6679(8) −0.623 1.0900 0.128989

0.128214

0.127656

Table 3: Bare parameters used in the computation of the QCD observables for L = L̃1.

very demanding with nowadays computing capabilities [61]. Altogether the extension of

the present work to full QCD is feasible and should be carried out, since presently no better

method is known to compute the b-quark mass from lattice QCD.
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A. Finite volume simulations

For the matching in a finite volume, we performed one set of simulations of (quenched)

QCD and one of HQET. In the case of the relativistic theory, we used L = L̃1, defined by

ḡ2(L̃1/4) = 1.8811.9 The parameters of these simulations have been taken from [31] (see

table 3). The difference is that here L = L̃1 = 2 L̃0 (and T = L/2 and T = L/2 ± a in

addition to T = L) compared to L = L̃0 in [31].

The parameters for the resolution L̃1/a = 20 cannot be found in the mentioned refer-

ence. For that point, the gauge coupling β has been chosen such that ḡ2(L̃1/4) = 1.8811

for L̃1/4a = 5, see [20]. The renormalization constant ZP and κl = κc have been com-

puted here, while bm and Z have been extrapolated from the values in table 2 of [31]. These

factors are put into the relationship between the bare mass mq,h and the RGI mass [20, 63],

M = hZm mq,h (1 + bmamq,h) , (A.1)

9L̃1 differs slightly from L1 defined in the main text by L1 = 0.718r0. This mismatch is however

corrected, as explained later in this appendix and in appendix D.
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L/a z R1 Φ2

θ1 = 0 θ1 = 1/2 θ1 = 1 θ0 = 0

θ2 = 1/2 θ2 = 1 θ2 = 0

20 10.4 0.09795(13) 0.27426(30) −0.37221(42) 7.847(40)

20 12.1 0.09512(12) 0.26588(30) −0.36100(43) 9.108(46)

20 13.3 0.09336(12) 0.26068(30) −0.35404(43) 10.068(50)

24 10.4 0.09958(18) 0.27904(37) −0.37862(52) 7.697(44)

24 12.1 0.09689(17) 0.27110(37) −0.36799(52) 8.866(50)

24 13.3 0.09528(17) 0.26632(36) −0.36159(50) 9.716(54)

32 10.4 0.10157(30) 0.28481(71) −0.38638(93) 7.512(53)

32 12.1 0.09897(30) 0.27717(71) −0.37614(92) 8.623(58)

32 13.3 0.09744(30) 0.27265(71) −0.37008(92) 9.411(62)

40 10.4 0.10283(30) 0.28806(52) −0.39089(76) 7.484(51)

40 12.1 0.10027(30) 0.28052(52) −0.38079(75) 8.575(56)

40 13.3 0.09876(29) 0.27608(52) −0.37484(74) 9.344(60)

CL 10.4 0.10450(44) 0.29297(89) −0.39748(125) 7.341(96)

CL 12.1 0.10202(44) 0.28567(90) −0.38769(124) 8.386(102)

CL 13.3 0.10058(44) 0.28143(91) −0.38202(124) 9.106(107)

Table 4: Simulation results of the finite volume (L = L̃1) relativistic observables needed in our

main strategy. The continuum limits, obtained by linear extrapolation in (a/L)2 of the results for

L/a ≥ 24, are indicated by CL.

where

Zm =
Z ZA

ZP
, and amq,h =

1

2

(
1

κh
−

1

κc

)
. (A.2)

The renormalization constant ZA(g2
0) is known non-perturbatively from [30], while

h =
M

m(µ0)
= 1.544(14) , µ0 = 2/L̃1 , (A.3)

relates the running quark mass in the Schrödinger functional scheme [20] at the scale µ0,

to the renormalization group invariant quark mass M 10.

For all values of L̃1/a three hopping parameters κh have then been fixed in order to

achieve

z = L̃1 M = 10.4, 12.1, 13.3 . (A.4)

We collect these parameters in table 3, whereas the results for the quantities needed in

the matching step are summarized in tables 4 and 5. The errors there include systematics

due to the uncertainties in the Z-factors, in particular, the error on the universal factor h

has been propagated only after performing the continuum limit extrapolations. Ensembles

of roughly 2000 (for L̃1/a = 20) to few hundreds (for L̃1/a = 40) gauge configurations

10In h = M/m(µ0) we take the small difference between the above defined L̃0 and the value L0 = L1/2

into account. It causes a change of less than 1% of the value of h used in [31].
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L/a z Rav Φ̃3

θ1 = 0 θ1 = 1/2 θ1 = 1 θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0

20 10.4 0.1699(9) 0.4299(12) −0.5998(20) 8.059(37) 8.293(37) 8.993(37)

20 12.1 0.1668(9) 0.4198(11) −0.5867(20) 9.315(37) 9.545(37) 10.234(37)

20 13.3 0.1649(9) 0.4137(11) −0.5787(19) 10.271(37) 10.500(37) 11.180(37)

24 10.4 0.1739(23) 0.4391(31) −0.6130(54) 7.864(39) 8.102(38) 8.822(39)

24 12.1 0.1710(23) 0.4295(30) −0.6005(52) 9.027(39) 9.263(38) 9.971(39)

24 13.3 0.1693(22) 0.4239(29) −0.5931(51) 9.874(39) 10.109(38) 10.809(38)

32 10.4 0.1760(41) 0.4494(48) −0.6254(90) 7.713(43) 7.941(41) 8.661(42)

32 12.1 0.1733(40) 0.4403(46) −0.6135(87) 8.818(42) 9.045(41) 9.753(42)

32 13.3 0.1717(40) 0.4349(45) −0.6066(85) 9.603(42) 9.828(41) 10.531(42)

40 10.4 0.1790(70) 0.4493(72) −0.6283(142) 7.656(45) 7.894(42) 8.624(44)

40 12.1 0.1763(68) 0.4403(70) −0.6166(138) 8.743(45) 8.979(42) 9.698(44)

40 13.3 0.1747(67) 0.4352(68) −0.6099(136) 9.509(45) 9.744(42) 10.456(44)

CL 10.4 0.1801(75) 0.4587(84) −0.6392(159) 7.533(89) 7.765(86) 8.496(88)

CL 12.1 0.1776(73) 0.4502(81) −0.6280(154) 8.573(91) 8.805(88) 9.524(89)

CL 13.3 0.1761(72) 0.4452(79) −0.6218(151) 9.289(93) 9.519(91) 10.234(92)

Table 5: Same as table 4 in the case of the alternative strategy.

L/a Rstat
1

θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

6 0.06936(5) 0.06939(4) 0.18583(7) 0.18591(7) -0.25519(12) -0.25530(11)

8 0.07572(6) 0.07574(6) 0.20452(11) 0.20457(11) -0.28024(17) -0.28031(17)

10 0.07821(5) 0.07822(5) 0.21246(8) 0.21249(8) -0.29067(13) -0.29071(13)

12 0.07934(8) 0.07935(8) 0.21622(13) 0.21625(13) -0.29556(21) -0.29559(20)

CL 0.08238(12) 0.22596(21) -0.30835(32)

Table 6: Lattice results of Rstat
1 for L = L1. The continuum limits are obtained by a linear

extrapolation in (a/L)2 of the results for L/a ≥ 8.

have been generated for this part of the computation. The lattice L̃1/a = 20 is not used

in the extrapolations but rather to check for the smallness of higher order cutoff effects for

L̃1/a ≥ 24.

Concerning the simulation of HQET, we have computed the various quantities in the

two required volumes. The first one, where we match the effective theory with QCD, has

a space extent L1. The second one is such that L2 = 2L1. The value of the Schrödinger

functional renormalized coupling is fixed at ḡ2(L1) = 3.48, and we have used the resolutions

L1/a = 6, 8, 10, 12. The corresponding values of β as well as κ = κc can be found in table

A.1 of [1]. All these quantities are computed with two different actions, HYP1 and HYP2.

The continuum values are then obtained by constraining the fits to give the same values

for these actions. We note that the results for HYP1 and HYP2 are statistically correlated.
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L/a Rstat
av

θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

6 0.1502(3) 0.1543(3) 0.3562(3) 0.3688(3) -0.5231(6) -0.5231(6)

8 0.1544(4) 0.1575(4) 0.3672(4) 0.3765(4) -0.5216(7) -0.5340(8)

10 0.1571(5) 0.1595(5) 0.3724(6) 0.3710(6) -0.5295(10) -0.5391(10)

12 0.1561(8) 0.1579(8) 0.3729(8) 0.3786(9) -0.5289(15) -0.5365(16)

CL 0.08238(12) 0.22596(21) -0.30835(32)

Table 7: Lattice results of Rstat
av . The details are the same as in table 6.

L/a Σm(3.48, a/L)

HYP1 HYP2

8 0.431(11) 0.411(11)

10 0.437(11) 0.424(10)

12 0.422(16) 0.418(16)

CL 0.430(25)

Table 8: Lattice results of the step scaling function Σm. The bare parameters are described in

the text. The continuum limit is obtained by a linear extrapolation in (a/L)2 of the results for

L/a ≥ 8.

L/a Σkin
1 (3.48, a/L)

θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

6 0.6241(17) 0.6245(11) 0.6219(60) 0.6223(5) 0.6225(8) 0.6228(6)

8 0.5790(20) 0.5797(13) 0.5789(65) 0.5793(5) 0.5789(10) 0.5794(7)

10 0.5587(47) 0.5586(22) 0.5585(14) 0.5588(9) 0.5586(22) 0.5590(14)

12 0.5364(66) 0.5342(39) 0.5424(19) 0.5417(12) 0.5409(30) 0.5398(18)

CL 0.457(10) 0.471(3) 0.467(5)

Table 9: Lattice results of the step scaling function Σkin
1 . The continuum limits are obtained by a

linear extrapolation in a/L of the results for L/a ≥ 8.

For the computation of the step scaling functions one uses the same β, κ and L2/a =

2L1/a. All these computations are done with several thousand gauge configurations. Note

that, even if L1 is the same in QCD and in HQET, the typical lattice spacings are much

larger in the effective theory. The results of Rstat
1 and Rav can be found in tables 6 and 7.

The values of the step scaling functions are collected in tables 8, 9 and 10.

Finally there are simulations in small volume to obtain the subtractions Γstat
1 (L2) and

Γkin
1 (L2). These are done with L2 = 1.436 r0 and β determined from the knowledge of
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L/a Σkin
2 (3.48, a/L)

θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

8 4.81(44) 4.72(32) 1.58(15) 1.55(10) -1.19(11) -1.17(8)

10 4.34(58) 4.20(39) 1.43(19) 1.39(13) -1.08(15) -1.04(10)

12 4.79(86) 3.98(58) 1.58(28) 1.31(19) -1.19(21) -0.99(14)

CL 2.9(1.5) 0.96(50) -0.71(38)

Table 10: Same as table 9 for Σkin
2 .

β κs L3 × T aEstat a2Ekin

HYP1 HYP2 HYP1 HYP2

6.0219 0.133849 163 × 24 [32] 0.4345(21) 0.4029(32) 0.750(4) 0.774(3)

6.0219 0.133849 243 × 32 0.4378(25) 0.4034(20) 0.746(7) 0.776(5)

6.2885 0.1349798 243 × 48 0.3295(21) 0.3034(29) 0.643(7) 0.676(5)

6.4956 0.1350299 323 × 64 0.2724(20) 0.2461(14) 0.599(10) 0.620(11)

Table 11: Parameters of the large volume simulations. Where present, the numbers in brackets

refer to a second dataset at the same (β, κ) values.

r0/a [48]. The parameters, including κ = κc, are listed in table 6 of [27]. The values of β

do of course agree with the ones employed in the large volume, which we describe in the

next appendix.

B. Large volume simulations and extraction of matrix elements

The parameters for the simulations in large volume are collected in table 11 together with

the results for Estat and Ekin. The lattice extension L/a and β are such that L = 4L1 ≈

3/2 fm except for the second lattice where we have L = 6L1 ≈ 2 fm. This lattice is used

only to check for the absence of finite size effects. We see from table 11 that finite size

effects are indeed very small, the difference between the results from the L/a = 16 and

the L/a = 24 lattices at β = 6.0219 is consistent with zero within at most one standard

deviation (aEstat from HYP1). The number of configurations generated ranges from 4300

at β = 6.0219 to 2200 at β = 6.4956 (for the larger volume at β = 6.0219 we had 1300

configurations). Since our phenomenological input is the mass of the (spin averaged) Bs

meson, we set κ to κs in order to reproduce the quenched value of the strange quark mass

from ref. [64], i.e.

Msr0 = 0.35(1) , (B.1)

with Ms the renormalization group invariant strange quark mass defined as in appendix A

after replacing κh by κs.
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The numbers for Estat and Ekin have been obtained by applying two different fitting

procedures to two independent datasets (where available). The quoted errors are such

that both the results are covered and they therefore provide a reasonable estimate of the

systematics associated with the fits. We now sketch these procedures.

Let us consider in QCD the effective “mass” Γ(x0) obtained from the correlation func-

tion Fav(x0) in eq. (C.1) and its quantum-mechanical decomposition

Γ(x0) = −
∂0 + ∂∗

0

2
Fav = E0 + Ae−∆x0 + . . . (B.2)

where E0 is the energy of the ground state, ∆ is the gap between the ground and the first

excited states and the dots refer to contributions from higher states. The 1/mb expansion

reads

Γ(x0) = Estat + ωkinEkin + (Astat + ωkinA
kin)e−∆statx0(1 − ωkinx0∆

kin) + . . .

= Γstat(x0) + ωkinΓ
kin(x0) + . . . (B.3)

where Γstat and Γkin are defined in analogy to eqs. (3.10, 3.11) in terms of the correlators

f stat
A (x0) and fkin

A (x0).

In the correlation function fδA(x0) the same states contribute as in fA(x0). Performing

again first the quantum-mechanical decomposition and then the 1/mb expansion of these

correlators, it is easy to see that the ratios

P stat
A (x0) =

f stat
A (x0)

f stat
δA (x0)

and P kin
A (x0) = P stat

A (x0)

[
fkin
A (x0)

f stat
A (x0)

−
fkin

δA (x0)

f stat
δA (x0)

]
(B.4)

have the following form

P stat
A = b1 + b2e

−∆statx0 , (B.5)

P kin
A = b3 + b4e

−∆statx0 − b2∆
kinx0e

−∆statx0 . (B.6)

They can therefore be used to further constrain ∆stat and ∆kin. We are thus lead to perform

a combined fit

Γstat = b5 + b6e
−∆statx0 , (B.7)

Γkin = b7 + b8e
−∆statx0 − b6∆

kinx0e
−∆statx0 , (B.8)

together with eq. (B.5) and (B.6), with non-linear parameters a1 = ∆stat and a2 = ∆kin

and the linear parameters bi, which contain the desired b5 = Estat and b7 = Ekin.

Since the correction terms are nevertheless not so easy to compute at the smaller lattice

spacings, we perform the above fit first at β = 6.0219 and extract a∆stat and a2∆kin. We

then use that these quantities scale roughly (i.e. r0 ∆stat ≈constant and r2
0 ∆kin ≈constant).

To implement this, we input the scaled means as priors [65] in a second step where we add

χ2
prior =

∑

i=1,2

(
ai − aprior

1

)2

(δaprior
i )2

, (B.9)
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Figure 9: Results for P stat
A , P kin

A , Γstat and Γkin at β = 6.2885 (HYP2) with the corresponding

functions obtained by the fit.

to the standard χ2. The uncertainty δaprior
i is taken from the fit result at β = 6.0219.

However, in order to remain on the safe side, it is not scaled but kept constant at the

smaller lattice spacing. Thus δaprior
2 /aprior

2 ∝ 1/a2 for example. The constraint due to the

priors becomes weaker as we approach the continuum.

Here and in the following procedure the fit range is chosen to keep a minimum physical

distance from the boundaries, namely x0 ≥ tmin ≈ 2r0. The stability of the results is

checked by varying tmin to tmin − r0/2. As an example we show in figure 9 the results for

P stat
A , P kin

A , Γstat and Γkin at β = 6.2885. One observes that P stat
A , Γstat provide very good

constraints of the parameters ∆stat, b2, b6. The remaining ones are then effectively linear

fit parameters. Nevertheless, the error band of Ekin (dashed line) resulting from the fit is

not that small.

An alternative strategy is used to get a second estimate of Estat at the two coarser

lattice spacings, where we have two independent datasets. Exploiting again the remark

before eq. (B.4) we construct an effective mass ΓδA from the correlator fδA(x0) in the very

same way as Γstat is obtained from f stat
A (x0). The idea is to combine the two effective

masses in order to eliminate the contribution from the first excited state and then perform
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a fit to a constant (in the mentioned fit range). In practice we minimize the quantity

Q =

tmax∑

x0=tmin

[
Γstat(x0) + αΓδA(x0) − B

]2
, (B.10)

with respect to α, B. Finally the weighted average of
[
Γstat(x0) + αΓδA(x0)

]
/(1+α) yields

the estimate of Estat. The quality of the result is comparable to that obtained in the first

approach.

C. Alternative strategy

We briefly introduce an alternative strategy, based on the correlation functions fA, kV in

addition to f1, k1. With

Fav(x0, θ) =
1

4
log

(
− [fA]R (x0, θ) × [kV]3R (x0, θ)

)
(C.1)

we introduce

Rav(L, θ1, θ2) = Fav(x0, θ1) − Fav(x0, θ2) at x0 = L/2 , T = L (C.2)

Γav(L, θ0) = −
∂0 + ∂∗

0

2
Fav(x0, θ0) at x0 = L/2 , T = L . (C.3)

Keeping Φ1, from the standard strategy, we define the set of observables

Φ̃1(L,Mb) = Φ1(L,Mb) , (C.4)

Φ̃2(L,Mb) = Rav(L, θ1, θ2) − Rstat
av (L, θ1, θ2) , (C.5)

Φ̃3(L,Mb) = LΓav(L, θ0) , (C.6)

with the 1/mb expansion

Φ̃2(L,Mb) = ωkinR
kin
A (L, θ1, θ2) + cHQET

av RδA(L, θ1, θ2) (C.7)

Φ̃3(L,Mb) = L
[
mbare + Γstat(L, θ0) + ωkinΓ

kin(L, θ0) + cHQET
av ΓδA(L, θ0)

]
, (C.8)

where due to the spin average the combination

cHQET
av =

1

4
[cHQET

A + 3cHQET
V ] (C.9)

is present. The so far undefined terms Rstat
av , Rkin

A ,Γkin, RδA,ΓδA are straightforwardly ob-

tained from our definitions.

The alternative observables change from L to 2L via

Φ̃i(2L,Mb) =
∑

j≤i

σij(u) Φ̃j(L,Mb) + δi3 σ̃m(u) , (C.10)

σij(u) = lim
a/L→0

Σij(u, a/L) (C.11)

with the step scaling functions (we drop arguments θ1, θ2 and u = ḡ2(L) is understood)
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θ0 r0M
(0)
b r0M

(1a)
b r0M

(1b)
b

θ1 = 0 θ1 = 1/2 θ1 = 1 θ1 = 0 θ1 = 1/2 θ1 = 1

θ2 = 1/2 θ2 = 1 θ2 = 0 θ2 = 1/2 θ2 = 1 θ2 = 0

0 17.05(25) 0.17(6) 0.17(6) 0.17(6) 0.02(9) 0.02(8) 0.02(9)

1/2 17.01(22) 0.20(7) 0.18(6) 0.19(7) 0.02(10) 0.02(9) 0.02(9)

1 16.78(28) 0.34(11) 0.30(7) 0.32(8) 0.06(12) 0.06(9) 0.06(10)

Table 12: RGI results of Mb in the static approximation and of the 1/mb correction for the

alternative strategy.

Σ11(u, a/L) = Rkin
1 (2L)/Rkin

1 (L) = Σkin
1 (u, a/L) (C.12)

Σ21(u, a/L) =
1

Rkin
1 (L)

{Rkin
A (2L) − Rkin

A (L)Σ22(u, a/L)} (C.13)

Σ22(u, a/L) = RδA(2L)/RδA(L) (C.14)

Σ31(u, a/L) =
2L{Γkin(2L) − Γkin(L)}

Rkin
1 (L)

− Σ32(u, a/L)
Rkin

A (L)

Rkin
1 (L)

(C.15)

Σ32(u, a/L) = 2L
ΓδA(2L) − ΓδA(L)

RδA(L)
(C.16)

Σ33(u, a/L) = 2 (C.17)

σ̃m(u) = lim
a/L→0

2L
[
Γstat(2L) − Γstat(L)

]
. (C.18)

The final relation for the B-meson mass is eq. (2.30) with

L2m
(0a)
B (Mb) = σ̃m(u1) + 2 Φ̃3(L1,Mb) , (C.19)

L2m
(0b)
B (Mb) = L2[E

stat − Γstat(L2)] , (C.20)

L2m
(1a)
B (Mb) = σ31(u1) Φ̃1(L1,Mb) + σ32(u1) Φ̃2(L1,Mb) , (C.21)

L2m
(1b)
B (Mb) = L2

[
Ekin − Γkin(L2)

Rkin
1 (L2)

+
ΓδA(L2)Rkin

A (L2)

RδA(L2)Rkin
1 (L2)

]
σkin

1 (u1) Φ̃1(L1,Mb)

−L2
ΓδA(L2)

RδA(L2)

[
σ21(u1) Φ̃1(L1,Mb) + σ22(u1) Φ̃2(L1,Mb)

]
. (C.22)

Although the results have been already given in table 2, the reader will find more

details in table 12.

D. Propagating uncertainties in Li/r0 and ḡ2(Li)

In our simulations we have fixed L̃1 by ḡ2(L̃1/4) = 1.8811, because the corresponding bare

parameters β, κ are available in the literature. We here give the estimate of the small effect

caused by L̃1 6= L1 in the static approximation. From the polynomial interpolations of the
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step scaling function of the coupling, σ(u) [20], we estimate the corresponding mismatch

in couplings as

ũ − u = ḡ2(L̃1) − ḡ2(L1) = σ(σ(1.8811)) − 3.48 = −0.17(5) . (D.1)

Let us write

Mb

mB
= ρ(ũ, z) [1 + K(u)] at ũ = u (D.2)

with

K(u) =
Γstat

1 (L1) − Estat

mB
, ρ(u, z) =

z

Φ2(u, z)
. (D.3)

The relation d
du

Mb

mB
= 0 gives

−
1 + K(u)

ρ(u, z)

d

du
ρ(u, z) = K ′(u) =

1

mB

d

du
Γstat

1 . (D.4)

Denoting by ∆Mb the correction we have to add to Mb when it is computed with ũ 6= u

(as we did), we get from the above equations

1

mB
∆Mb = [ũ − u] × ρ(u)K ′(u) , (D.5)

where K ′(u) is easily estimated by taking a numerical derivative of Γstat
1 . From the differ-

ence of L/a = 12 and L/a = 10 at fixed g2
0 (with ḡ2|L/a=12 = 3.48) and with ρ(u, z) ≈ 1.44

we arrive at the small shift

r0∆Mb = −0.055(17) . (D.6)

A similar error is be taken into account due to the 2% uncertainty in the relation L2 =

1.436r0 [48]. In the same way it leads to a statistical error of

r0∆Mb = 0.016 . (D.7)

The two contributions eq. (D.6), eq. (D.7) are combined to

r0∆Mb = −0.055(23) , (D.8)

which we have taken into account in section 5.3. Because of the smallnes of these effects,

they can be neglected in the 1/mb-corrections.

In the case of our alternative strategy, the shift depdends on the value of θ0. We find

θ0 = 0 r0∆Mb = −0.042(20) , (D.9)

θ0 = 1/2 r0∆Mb = 0.009(11) , (D.10)

θ0 = 1 r0∆Mb = 0.150(45) . (D.11)
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